Heat transport and weakening of atmospheric stability induced by mesoscale flows
نویسندگان
چکیده
We present an analytical evaluation and interpretation on how diabatic heating of the convective boundary layer (CBL) is transported upward into the midtroposphere by mesoscale flows, and how the air mixes with the environment and therefore weakens the atmospheric static stability. The thermodynamic imprint on the free atmosphere due to the irreversible processes such as mixing, dissipation, and diffusion, associated with the mesoscale flow, is more clearly shown when the forcing is periodic in time. Convective mixing in the CBL accounts for a thermodynamic perturbation of the order of a few degrees, while mixing associated with the mesoscale activity accounts for a perturbation of the order of half a degree. To isolate this last effect, we prescribe a periodic forcing with a 1 day period, so over 24 hours, the net diabatic input averages to zero, and the contribution due to the advection cancels out. In this formulation the perturbation is solely due to irreversible processes associated with the mesoscale. These perturbations are relevant, since they are smaller, but of the same order of magnitude as perturbations associated with mesoscale advection and the CBL mixing. A more complete evaluation of the relative contribution to the atmospheric perturbations due to the mesoscale activity was completed using an initial value problem approach. In this case, there is a net transport of the diabatic heat induced by the mesoscale flow. As a consequence, when the mesoscale flow persists for several days, the static stability of the atmosphere is eroded by the combined action of the diabatic heat, CBL mixing, and transport and mixing due to the mesoscale activity. In this paper we first evaluate the contribution of the irreversible processes using a periodic in time forcing. Then we examine the atmospheric impact due to a sequence of several sea breeze days, starting from rest at time zero and letting the flow evolve as an initial value problem. Results suggest that perturbations associated with mesoscale flows generated by landscape variability are of climatological importance and need to be introduced in a parametric form in coarser large-scale models, as presently is done with turbulent subgrid CBL processes.
منابع مشابه
Vertical Velocities and Available Potential Energy Generated by Landscape Variability—Theory
It is shown that landscape variability decreases the temperature in the surface layer when, through mesoscale flow, cool air intrudes over warm patches, lifting warm air and weakening the static stability of the upper part of the planetary boundary layer. This mechanism generates regions of upward vertical motion and a sizable amount of available potential energy and can make the environment of...
متن کاملMesoscale Nonhydrostatic and Hydrostatic Pressure Gradient Forces—Theory
A theory is presented for the evaluation of the different terms of the pressure gradient force, when mesoscale flow is driven by a sensible heat source in the planetary boundary layer (PBL), or by an elevated confined heat source, such as the release of the latent heat of condensation in a cloud. The nonlinear and linear, and the nonhydrostatic and the hydrostatic pressure gradient contribution...
متن کاملبررسی جریانهای محلی روی تهران با استفاده از مدل میان مقیاس WRF و شرایط جوی ایدهآل
Wind is the carrier of pollutants and any other gaseous or particle matters in the atmosphere. Stable atmosphere with low wind provides favourable conditions for high contamination of pollutants in urban areas. The importance of mesoscale atmospheric flows in air pollution dispersion has been recognized in the past three decades and has been the focus of intensive research both observational ...
متن کاملThe impact of plant stomatal control on mesoscale atmospheric circulations
Avissar, R. and Pielke, R.A., 1991. The impact of plant stomatal control on mesoscale atmospheric circulations. Agric. For. Meteorol., 54: 353-372. Only a few numerical studies with mesoscale atmospheric models have been undertaken to explore the influence of vegetation on the generation and modification ofmesoscale atmospheric circulations. Nevertheless, these few studies have demonstrated the...
متن کاملTurbulent transport of trapped electron modes in collisionless magnetized plasma
Submitted for the APR09 Meeting of The American Physical Society Turbulent transport of trapped electron modes in collisionless magnetized plasma YONG XIAO, University of California, Irvine — A prominent candidate for the electron heat transport in high temperature toroidal plasmas is collisionless trapped electron mode (CTEM) turbulence. Our large scale simulations of CTEM turbulence using gyr...
متن کامل